If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-2x-156=0
a = 8; b = -2; c = -156;
Δ = b2-4ac
Δ = -22-4·8·(-156)
Δ = 4996
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4996}=\sqrt{4*1249}=\sqrt{4}*\sqrt{1249}=2\sqrt{1249}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{1249}}{2*8}=\frac{2-2\sqrt{1249}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{1249}}{2*8}=\frac{2+2\sqrt{1249}}{16} $
| 4x-4x^2+100-250+36x-45x^2=-234 | | 7^(2x+1)=49 | | 4x-4x^2+100-250+36x-45x^2=234 | | 4x-4x^2+100-350+36x-45x^2=-234 | | 4x-4x^2+100-350+36x-45x^2=234 | | 3(3k+5)=15 | | 9/10=1/5-x | | 0y=-3 | | 2x^2+10x+12.5=0 | | 8x-5+77=180 | | |x-7|=7 | | 3(3p-1)=15 | | 2x^2+10x-12.5=0 | | 4(2k+7)=48 | | -3x^2-0x+36=0 | | -3x^2-6x+36=0 | | 3x^2-6x+36=0 | | X-3+2x+1=180 | | 2(y+6)=7y | | 28w^2-140w-175=0 | | 0,022=X^2/(2.1x10^-3-2x)^2 | | 7y+2=69 | | 2^x+3+2^x=72 | | a^-3=4,167*10^-3 | | a=1-2-3/5 | | 5^2x-3*5^x+2=0 | | 5^(2x)-3*5^x+2=0 | | 3(9+4x)=21 | | 0.01x=1.00 | | (2a-1)(a+1)=0 | | Y=6.5*x+790 | | 2y+5=37/2 |